

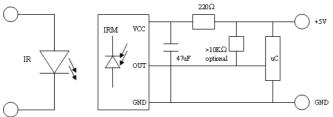
IRM-8601S

Features

- High protection ability to EMI and metal case can be customized.
- Mold type and metal case type to meet the design of front panel.
- Elliptic lens to improve the characteristic against.
- Line-up for various center carrier frequencies.
- Low voltage and low power consumption.
- •High immunity against ambient light.
- Photodiode with integrated circuit.
- TTL and CMOS compatibility
- Long reception distance
- Low power consumption
- High sensitivity
- Pb free
- The product itself will remain within RoHS compliant version

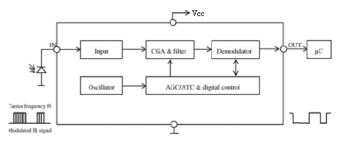
Description

The device is a miniature type infrared remote control system receiver which has been developed and designed by utilizing the most updated IC technology. The PIN diode and preamplifier are assembled on lead frame,


the epoxy package is designed as an IR filter. The demodulated output

signal can directly be decoded by a microprocessor.

Applications


- · Light detecting portion of remote control
- AV instruments such as Audio, TV, VCR, CD, MD, etc.
- Home appliances such as Air-conditioner, Fan, etc.
- The other equipments with wireless remote control.
- CATV set top boxes
- Multi-media Equipment

Application Circuit

RC Filter should be connected closely between Vcc pin and GND pin.

Block Diagram

Pin Configuration 1. OUT 2. GND

3. Vcc

IRM-8601S

(Dimensions in mm) 3.8 3.5 6.8 Polos σ ŋ лi 4 7.76 7.6 4 10 G 0.95 0 σ 5.5 16.34 ± 0.5 9 0.5 0.4 3 C (1)1 2.54 2.54 () оит P.O 2) GND 3 Vcc Ŋ m

Package Dimenstions

Notes:

Tolerances unless dimensions ±0.3mm.

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply Voltage	Vcc	6	V
Operating Temperature	Topr	-20 ~ +80	°C
Storage Temperature	Tstg	-40 ~ +85	°C
Soldering Temperature ^{*1}	Tsol	260	°C

^{*1} 4mm from mold body less than 10 seconds

Electro-Optical Characteristics (Ta=25°C and Vcc=3.0V)

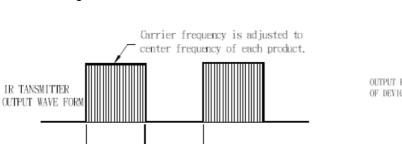
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Condition
Consumption Current	lcc			3	mA	No signal input
Supply Voltage	Vcc	2.7		5.5	V	
B.P.F Center Frequency	Fo		38		KHz	
Peak Wavelength	λр		940		nm	
Reception Distance	L0	8			m	At the ray axis*2
	L45	4				
Half Angle(Horizontal)	θh		45		deg	
Half Angle(Vertical)	θv	-	35	-	deg	
High Level Pulse Width	TH	400		800	μs	At the ray axis*3
Low Level Pulse Width	TL	400		800	μs	
High Level Output Voltage	VH	4.5	-	-	V	
Low Level Output Voltage	VL	-	0.2	0.5	V	

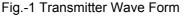
*2. The ray receiving surface at a vertex and relation to the ray axis in the range of $\theta=0^{\circ}$ and $\theta=45^{\circ}$.

*3. A range from 30cm to the arrival distance. Average value of 50 pulses.

Test Method

The specified electro-optical characteristics is satisfied under the following Conditions at the controllable distance.

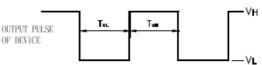

- 1. Measurement place
- A place that is nothing of extreme light reflected in the room.
- 2. External light

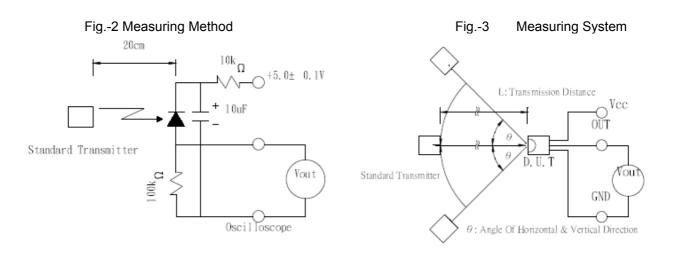

Project the light of ordinary white fluorescent lamps which are not high Frequency lamps and must be less then 10 Lux at the module surface. ($Ee \le 10Lux$)

3. Standard transmitter

A transmitter whose output is so adjusted as to **Vo=400mVp-p** and the output Wave form shown in Fig.-1.According to the measurement method shown in Fig.-2 the standard transmitter is specified. However, the infrared photodiode to be used for the transmitter should be $\lambda p=940nm, \Delta \lambda=50nm$. Also, photodiode is used of PD438B (Vr=5V). (Standard light / Light source temperature 2856°K).

4. Measuring system According to the measuring system shown in Fig.-3




600us

600us

D.U.T output Pulse

Typical Performance Curves

Fig.-4 Relative Spectral Sensitivity vs. Wavelength

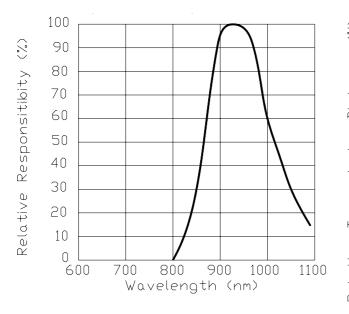


Fig.-6 Output Pulse Length vs. Arrival Distance

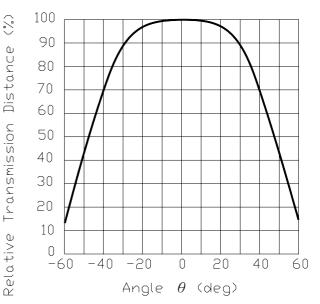
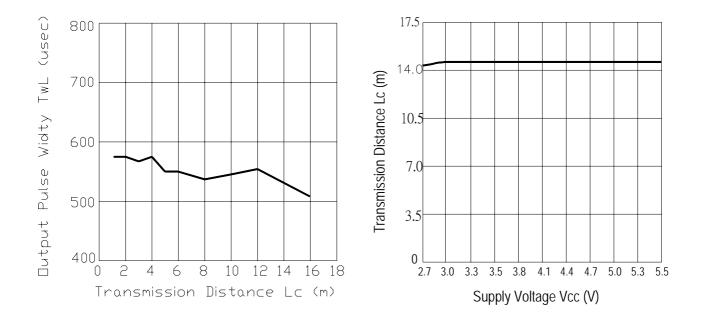
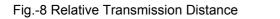
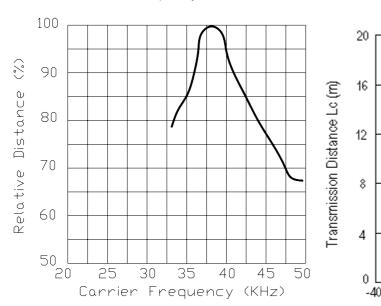
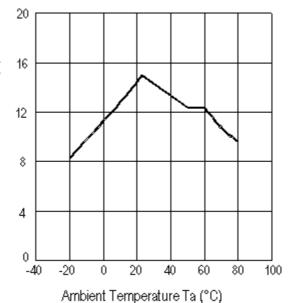




Fig.-7 Arrival Distance vs. Supply Voltage



IRM-8601S



Center Carrier Frequency

Fig.-9 Arrival Distance vs. Ambient Temperature

vs.

Packing Quantity

1500 pcs / Box 10 Boxes / Carton

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 3. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.